{rfName}
Se

Licencia y uso

Altmetrics

Grant support

We would like to thank the University of Carlos III, campus Leganes, Madrid, for performing laboratories and hangers through our research. We would also like to thank our colleagues at Drone Hopper for their support during the project. This work was conducted to complete the doctoral project of Mohammad Sadeq Ale Isaac with the support of Professor Pascual Campoy, and Doctor Ahmed Refaat Ragab. This work was supported by the ULTRADRON Project, funded by CDTI under the call number PTAP-20231017, focused on "Enabling Technologies for an Intelligent Logistics Unit with Drone Technology" and by the project INSERTION ref. ID2021-127648OBC32,"UAV Perception, Control and Operation in Harsh Environments," funded by the Spanish Ministry of Science and Innovation under the program" Projects for Knowledge Generating."

Análisis de autorías institucional

Isaac, Mohammad Sadeq AleAutor (correspondencia)Luna, Marco AndrésAutor o CoautorCampoy, PascualAutor (correspondencia)

Compartir

Publicaciones
>
Artículo

Sensing and Control Integration for Thrust Vectoring in Heavy UAVs: Real-World Implementation and Performance Analysis

Publicado en:Unmanned Systems. - 2024-06-04 (), DOI: 10.1142/S2301385025500396

Autores: Isaac MSA; Peña PF; Luna MA; Ragab AR; Campoy P

Afiliaciones

Drone Hopper Co, Leganes 28919, Spain - Autor o Coautor
October 6 Univ, Fac Informat Syst & Comp Sci, Dept Network, Giza 12511, Egypt - Autor o Coautor
Univ Carlos III Madrid, Dept Elect Engn, Leganes 28919, Spain - Autor o Coautor
Univ Politecn Madrid UPM CSIC, Ctr Automat & Robot Car, Comp Vis & Aerial Robot Grp, Madrid 28006, Spain - Autor o Coautor

Resumen

Unmanned Aerial Vehicles (UAVs) have garnered significant attention among researchers due to their versatility in diverse missions and resilience in challenging conditions. However, electric UAVs often suffer from limited flight autonomy, necessitating the exploration of alternative power sources such as thermal engines. On the other hand, managing thermal engines introduces complexities and internal uncertainties into the system. In this paper, an Adaptive Robust attitude controller (ARAC) is proposed to address these challenges by drawing inspiration from helicopter solutions while minimizing mechanical intricacies. Specifically, the designed algorithm employs Thrust Vector Control (TVC) for an industrial heavy Multi-Ducted Fan (MDF), known for its superior static stability compared to conventional ducted fans. Subsequently, an integrated flap vanes system is positioned at the exhaust of the ducts for precise attitude control, effectively removing unwanted yaw moments associated with traditional propellers. This research builds on prior authors' works to establish a proper mathematical and aerodynamic model. Also, using former simulation results to conduct real flight experiments aimed at enhancing TVC functionality. The findings highlight the effectiveness of this approach for heavy UAV applications. It is worth noting that the practical value of this research lies in its potential to significantly extend flight autonomy supplied by thermal engines and improve the resilience of UAVs in challenging real-world missions. This is particularly achievable provided that the design of flap vanes aligns closely with the dimensions of the duct system, offering a promising solution to a critical engineering challenge in the field of UAV technology.

Palabras clave

Adaptive sliding mode controlAerial vehicleAircraft controlAntennasAttitude controlControl integrationDesignDucted fanDuctsEnginesFlight autonomyFlight control systemsHeavy uavsHeavy unmanned aerial vehicleModeMulti-ducted faMulti-ducted fanRobust controlServo flap sensingSliding mode controlThermal enginesThrust vector controlUnmanned aerial vehicles (uav)Vector control (electric machinery)

Indicios de calidad

Impacto bibliométrico. Análisis de la aportación y canal de difusión

El trabajo ha sido publicado en la revista Unmanned Systems debido a la progresión y el buen impacto que ha alcanzado en los últimos años, según la agencia Scopus (SJR), se ha convertido en una referencia en su campo. En el año de publicación del trabajo, 2024 aún no existen indicios calculados, pero en 2023, se encontraba en la posición , consiguiendo con ello situarse como revista Q1 (Primer Cuartil), en la categoría Aerospace Engineering. Destacable, igualmente, el hecho de que la Revista está posicionada por encima del Percentil 90.

2025-06-15:

  • WoS: 1
  • Scopus: 2

Impacto y visibilidad social

Desde la dimensión de Influencia o adopción social, y tomando como base las métricas asociadas a las menciones e interacciones proporcionadas por agencias especializadas en el cálculo de las denominadas “Métricas Alternativas o Sociales”, podemos destacar a fecha 2025-06-15:

  • La utilización de esta aportación en marcadores, bifurcaciones de código, añadidos a listas de favoritos para una lectura recurrente, así como visualizaciones generales, indica que alguien está usando la publicación como base de su trabajo actual. Esto puede ser un indicador destacado de futuras citas más formales y académicas. Tal afirmación es avalada por el resultado del indicador “Capture” que arroja un total de: 5 (PlumX).

Análisis de liderazgo de los autores institucionales

Este trabajo se ha realizado con colaboración internacional, concretamente con investigadores de: Egypt.

Existe un liderazgo significativo ya que algunos de los autores pertenecientes a la institución aparecen como primer o último firmante, se puede apreciar en el detalle: Primer Autor (ALE ISAAC KHOUEINI, MOHAMMAD SADEQ) y Último Autor (CAMPOY CERVERA, PASCUAL).

los autores responsables de establecer las labores de correspondencia han sido ALE ISAAC KHOUEINI, MOHAMMAD SADEQ y CAMPOY CERVERA, PASCUAL.